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The proper analytical solution of the 
Korteweg-de Vries-Burgers equation 

Shu Jian-Jun 
Shanghai Institute of Computer Technology, 546 Yu Yuan Road, Shanghai, People’s 
Republic of China 

Received 30 September 1986 

Abstract. On using variable transformations and proofs of theorems, the asymptotic 
behaviour and the proper analytical solution of the Korteweg-de Vries-Burgers equation 
have been found in this letter. 

It is common knowledge that many physical problems (such as non-linear shallow-water 
waves and wave motion in plasmas) can be described by the Kdv equation [ 11. Solitons 
and solitary waves, one class of special solutions of the Kdv equation, have been known 
for some time. In order to study the problems of the flow of liquids containing gas 
bubbles [2], the fluid flow in elastic tubes, and so on [3-51, the control equation can 
be reduced to the so-called KdV-BUrgerS equation as follows [6]: 

au au a2u a3u 
-+U-- V T +  S,=O. 
a t  ax ax ax 

This equation is equal to the Kdv equation if a viscous dissipation term (vu,,) is added. 
At present, studies of the Kdv equation ( v  = 0) and Burgers equation ( 6  = 0) have been 
undertaken, but studies of the KdV-BUrgerS equation are just beginning. The exact 
solution for the general case of equation (1) ( v  # 0, S # 0) has still not been calculated. 

In studying the theory of ordinary differential equations and applications, it is clear 
that the asymptotic solution behaviour is highly important. The asymptotic behaviour 
and the proper analytical solution of equation (1) are presented in this letter. It would 
be useful to thoroughly research the properties of the solution to the Kdv-Burgers 
equation. At present, numerical studies of equation (1) are gradually increasing in 
frequency [5], and so the proper analytical solution would provide a reliable basis for 
estimating the advantages, and disadvantages of the numerical method. 

Jeffrey and Kakutani [7] have thoroughly analysed the qualitative characteristics 
of the solution of equation (1). They introduce the following new variables [6,7]: 

l = x - A t  t’= t .  ( 2 )  

U,,+ ( U - A)u, - VU<< + SU,,, =O. (3) 
We shall only consider the so-called travelling-wave solution, i.e. U =f( I ) .  Integrat- 

Equation (1) can be written as 

ing formula (3 )  for 5, we can obtain a non-linear differential equation as follows: 

SU,, - + $U* - A U  + A  = o (4) 
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where A is an integral constant, less than $ A 2 .  Equation (4) is equal to a non-linear 
equation set of first order as follows: 

where U ~ , ~ = A ~ J A ’ - ~ A  and u 1 > u 2 .  
According to the qualitative theory of ordinary differential equations [ 81, the 

equation set ( 5 )  has two singular points, ( ul, 0) and ( u 2 ,  0). The singular point (U*, 0) 
is invariably a saddle point. The singular point ( u l ,  0) has three different cases which 
depend on the values of U, 1 S and A. 

(a) If u2>4SJA2-2A, ( u l , O )  is a nodal point. 
(b) If O <  v2<4SJA2-2A, ( u , , O )  is a focal point. 
(c) If v = 0, (U,, 0) is a central point. 
The three classes of solutions are roughly shown in figure 1 .  
A proper solution is one which is real and continuous if the argument is greater 

We use some variable transformations to reduce equation (4) to a simple form. 
With S # 0 and v # 0, equation (4) can be written as 

than a certain value. 

uL5 + aut + bu2+ cu + E = 0 (6) 

where a = -v/S, b = 1/26, c = A/S and E = A / &  
To observe the general character, we can consider E = O .  For if E # 0, we can 

make a simple translation transformation U = U’ + D ( D  = A f JA - 2A). ti satisfies the 
following equation: 

zia + + bG2 + ( c  + 2bD)U’ = 0. 

From now on, we shall confine ourselves to consideration of E = 0 (i.e. A = 0) alone. 
We can further assume that A 3 0. For if A < 0, we can make 1 = -A and discuss 

We make the following variable transformation: 
it in the same manner. 

( 7 )  

(8) 

= = e u 5 / S  

Equation (6) ( E  = 0) can be written as 

a2r2d2u/dr2+ bu2+ cu = 0. 

U 

t 

I 

5 .  

Figure 1. The typical solution of the Kdv-Burgers  equation. A is a dissipation-dominant 
solution for a monotonic shock wave, B is a chromatic dispersion-dominant solution for 
an oscillatory shock wave and C is a solitary-wave solution of the Kdv  equation. 
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Now we make the following variable transformation: 
k = 7 1 / 2 ( 1 - k )  77(0 5 = 7  

where k = (1 - 4 ~ / a ’ ) ’ ’ ~  = ( 1  + ~ A S / U ~ ) ” ~  is a constant, and obviously k a  1.  
Equation ( 8 )  can be written as 

i.e. 

L5 1 

(9) 

Next we introduce the following new variables: 

77 = -2u2k2y/6 X = (  (12) 
and we let U = ( 1  - 5k) /2k It is obvious that if A = 0, u = -2, and if A > 0, -5 < U < -2. 
Equation ( 1  1 )  can be reduced to 

d2y/dx2 = x‘y2. (13 )  
We can use equation (13) to derive some characteristics of the Kdv-Burgers equation. 

Dejnition. Let f ( x )  be an arbitrary function of x. If xo is a zero point and no other 
zero point except xo exists in the open interval (xo- E ,  xo+ E )  for some E > 0, then xo 
is called an isolated zero point of the function f ( x ) .  

Theorem 1. The Kdv-Burgers equation ( 4 )  has finite isolated zero points only. 

fioo$ Since y”= xu$, y” does not change its sign for x E (0, +CO). Equation (13 )  has 
finite zero points only, except that it identically vanishes for some intervals. Equation 
(13) has finite zero points only. This theorem can be proved by inverse transformation. 

From theorem 1,  we see that the solution of the KdV-Burgers equation is consistently 
positive, negative or zero for large arguments. It depends upon the conditions of the 
infinite point. 

In order to obtain the proper solution of the KdV-BUrgerS equation, we introduce 
the following three lemmas, which are not proved here. 

Lemma 1 .  The integral rule for asymptotic formulae. Let cp( t )  -f( t ) ,  where f( t )  # 0 
and does not change in sign. If 

If( t)ldt = +CO If: 
[ , ;v( t )dt-[ff( t )dt  ‘0 

then 

and if 

I f ( t ) l  d t  < +CO 
10 
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then 
+m 

q ( t )  d t -  f ( t )  dt. 
I I 

Lemma 2. The character of the proper solution. I f f (  t )  > 0, and i f f  is a continuous 
and non-negative function as f 3 to,  thenf rs f l r f  for t 2 to for any E > 0, except perhaps 
in a set of intervals of finite total length which depends upon E.  

Lemma 3. Hardy’s theorem. Any solution of the equation 

continuous for t 3 to, is ultimately monotonic, together with all its derivatives and 
satisfies one of the relations 

f -  a r b  e‘(‘) f -  at*(ln t )” ‘  

where E ( t )  is a polynomial in t and c is an integer. 

We can use the above three lemmas to obtain the asymptotic expressions of the proper 
solution of the Kdv-Burgers equation. 

Theorem 2. If A > 0, every negative proper solution of the KdV-BUrgerS equation has 
the following asymptotic form: 

as 5 + +a, where k = ( 1  + 4A6/ u2)”*,  and a ,  > 0 is constant. 

Proof: First of all, we consider equation ( 1 3 )  ( -: < U < - 2 ) .  If U is a negative proper 
solution, then y is a positive proper solution, Since y” = x‘y2 > 0 for x > 0, y’  must be 
strictly monotonically increasing for x E (0, +a) and y must be a monotone function 
for large x. 

Thus y ’  has three possible cases as x +  +a: 
( 1 )  Y ‘ + O  
(2) Y ’ + Y b > O  
( 3 )  y ’++oo.  
Let us show that case ( 2 )  is impossible. 
If y’+ yb> 0, then y - ybx, and from equation ( 1 3 )  

y “  = - y A 2 x u + 2  > 1 I 2  0 + 2  
2 Y O  x 

whose integration yields 

y ’ > y b z x ~ + 3 - c o + + a  

2( U + 3) .  

for large x, where co is constant, which is a contradiction. 
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We now show that case (3) is impossible. 
If y ' +  +CO, then y ' >  M for large x for some M > 0, and hence y > M x .  Reverting 

to equation (13) ,  y" = x'y2 > M 2 ~ u + 2 ,  y' > [ M2/2( u + 3 ) ] x u c 3 ,  y > 
[ M 2 / 4 (  u + 3)( U + 4 ) ] ~ ~ + ~ .  Continuing in this fashion, we obtain y > Coxb,  for large x 
for some co> 0. Hence from equation (13), y" = x'y2> &y3l2 for large x. Since y'  is 
positive, we have 

y'y"> JGy3/2y'  

whose integration yields 

y'2 > ;J&y5/2 or y ' >  ~ c , ! , / ~ Y ' / ~ / J ~ .  

Using lemma 2, we know this is not possible. 
Consequently we are left with case ( l ) ,  where y ' +  0. 
Since y'  is strictly monotone increasing for x E (0 ,  +CO), y ' <  0 for x E (0, +CO), or y 

is strictly monotone decreasing for x E (0, +CO). Since y > 0 for large x, y has a finite 
limit a, 3 0 as x + +CO. 

Let us show that am # 0. 
If a, = 0, then let y ( x o )  = S > 0 be small. Since y is strictly monotone decreasing, 

S = y ( x o )  = IX: ( lr+, t:y2 dt,) d t  < S2 jx: ( lrie i ;  dt,) di  

or 
S 2 >  (a+ l)(u+2)/xo"+2 

and we have a contradiction for 6 sufficiently small. 
Then let y(+oo)=a,>O, y ( x ) = a , + 0 ( 1 )  as X + + C O :  

2 

t'y2 dt  =a, xu+ ' [  1 + O( l ) ]  
u + l  

and thus 
2 

xu+2[  1 + O( l)]. am 
( u + l ) ( a + 2 )  

y ( x )  = a, - IX+, y' dt  = a,+ 

This theorem can then be proved by inverse transformation. 

Theorem 3. If A = 0, every negative proper solution of the Kdv-Burgers equation has 
the following asymptotic form: 

4 

as l+ +CO, where k = ( 1  + 4AS/ Y ~ ) " ~ .  

Proof: First of all, we consider equation (13 )  ( a =  -2). I f  U is a negative proper 
solution, then y is a positive proper solution. 

Let x = e', obtaining from equation (13)  
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For if dy lds  = O  at so, then d2y/ds2=y2>0,  and y can only have a minimum at so. 
Hence y is a monotone function for large x. 

Thus y has three possible cases as s + +CO: 

(1) Y + O  
(2) Y + Y O > O  
(3) y++oo. 
Let us show that case (2) is impossible. 
If y + yo > 0, then d2y/ds2 - dy/ds - yi. Integrating, we obtain dy/ds - y - yis. 

Since y + yo> 0, this implies dy/ds - yis, from which y -$YES', which contradicts 
Y -$ Yo. 

Let us show that case (3) is impossible. 
If y + +CO, then let p = dy/ds. Equation (16) becomes 

p d p / d y - p - y 2 = 0 .  (17)  

Since y + +a, p = dy/ds > 0. Using lemma 3, we see that p has two possible cases for 
large y: 

(i) p - a,yb- eEm(y) 
(ii) p - a2ybm(1n y)"m 

Let us show that case (i) is impossible. 
If E,(y) + -00, then p + 0 and dpldy + 0. By referring to equation (17), we see 

that this is a contradiction. If E,(y)++oo, then p > y 2  for large y. Using lemma 2 ,  
we know that this is not possible. Hence E,(y) = constant. 

If b, > 1, then p > ylt(b--1)/2 f or large y. Using lemma 2 ,  we know that this is not 
possible. If b,s 1, then from equation (17) we obtain p dp/dy - y2. Integrating, we 
obtain bp2 - fy', where 2b, = 3, or b, = ;> 1, which is a contradiction. 

where a ,  and a2 are two positive numbers and E,(y) is a polynomial in y. 

Let us show that case (ii) is impossible. 
If Z, > 1, then p > yl+c'm-1)/2 for large y. Using lemma 2 ,  we know this is not 

possible. If ZmS 1, then from equation (17) we obtain p dp/dy -y2. Integrating, we 
obtain $p2 - 4y3, whence 21, = 3, or Z, = ; > 1, which is a contradiction. 

Consequently we are left with case ( l ) ,  where y + 0. 
Letting U = l / y  and w = dulds, we obtain from equation (16) 

w d w / d ~  - 2 ~ ~ 1 ~  - w + 1 = 0. (18) 
Since y + 0, v + +CO and dylds  < 0, we obtain w = du/ds = - ( l /y2)(dy/ds)  > 0. Using 
lemma 3, we see that w has two possible cases for large U: 

(iii) w - a l u b m  eEm(u) 

(iv) w - a2u'-(1n U)"= 

We now show that if case (iii) is satisfied, then E,( U )  = constant and b, = 0. 
Similar to above, E,( U )  
If b, = 1, then dwldu - a ,  > 0. From equation (18), we obtain a, - 2a, - 1 = 0, or 

If O <  b,< 1, then from equation (18) we obtain dw/dv - 1. Integrating, we obtain 

If b,<O, then from equation (18) we obtain w dwldu-  -1. Integrating, we obtain 

Let us show that if case (iv) is satisfied, then Z, = 0 and m,  = 0. 
Similar to above, either Z,= 1 and m,f 0, or l,= 0. 

where a ,  and az are two positive numbers and &(U) is a polynomial in U. 

constant and b, 4 1. 

a ,  = -1, which is a contradiction. 

w - U, from which b, = 1, which is a contradiction. 

t w L -  U, which is a contradiction. 
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If I , =  1,  m,<O or m,> 0, then from equation (18) we obtain dw/du- 1 or 
dw/du - 2w/ U. Integrating, we obtain w - U or w - U’, whence m,  = 0, which is a 
contradiction. Hence I ,  = 0. 

If m,  < 0, then from equation (18) we obtain w dw/du - - 1 .  Integrating, we obtain 
i w ’  - -U, which is a contradiction. 

I f  m,>O, then from equation (18) we obtain dwldu-1. Integrating, we obtain 
w - U, whence m,  = 0, which is a contradiction. 

Summing up, we obtain w - a, > 0. From equation (18) we obtain a, = 1 or w - 1,  
whence du/ds - 1 as s + +a?. integrating, we obtain U - s as s + +a?, whence y - l / l n  x 
as x + +CO. 

This theorem can be proved by inverse transformation. 

Developing theorem 2, we obtain the approximate proper analytical solution of the 
KdV-BUrgerS equation. 

Theorem 4. If A > 0, the negative proper solution of the Kdv-Burgers equation can be 
written as 

2 k4 U’ +, ( 2 ~ , ) ~ + ’  exp { - [ ( i + 1 )( k - 1) u5/2S]} c -- 
6 i = l  I I j = l  [ j ( k - 1 ) + 2 k ] [ j ( k - 1 ) ]  

where k = ( 1  + 4AS/ v’)”’ and a, > 0 is constant. 

Roo$ Since exp{- [( i + 1)( k - 1)5/2S]} exists, the infinite series converges. Let 

( 2 ~ , ) ’ + ~  exp{- [ ( i +  1)( k - l)u5/26]} -- 
2k2v2 6 r = i  f I I j = l  [ j ( k - 1 ) + 2 k ] [ j ( k - l ) ]  

whence 

We can obtain 

for an arbitrary integer m. 
Since U, + U as m + +CO, y, + y+, as m + +a?, whence 

) 
+m +m 

~ + , = a , + [ ~  (I, t:y:mdtl dr 

and y,, is the positive proper solution of equation (13). 
This theorem can be proved by inverse transformation. 
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